

LIFE CYCLE ASSESSMENT OF REUSABLE LITHIUM-ION BATTERY PACKAGING SYSTEMS

White Paper

TABLE OF CONTENTS

• Executive Summary	3
• Introduction	3
• Understanding Life Cycle Assessment (LCA)	4
• Reusable vs. Single-Use Hazmat Packaging	6
• Environmental and Economic Impact	11
• Americase Case Studies	14
• Best Practices for Implementation	16
• Conclusion: Rethinking Hazmat Packaging Through Lifecycle Intelligence	17

EXECUTIVE SUMMARY

Reusable packaging offers clear sustainability advantages, but quantifying its long-term impact versus single-use alternatives is especially critical for lithium-ion battery logistics, where safety, compliance, and environmental risk converge. This white paper presents a comprehensive life cycle assessment (LCA) framework for evaluating reusable packaging systems designed specifically for the transportation and storage of lithium-ion batteries.

The analysis examines material sourcing, manufacturing, transportation, usage cycles, cleaning, refurbishment, and end-of-life processes unique to lithium-ion battery containment. It also evaluates how repeated reuse influences carbon footprint, waste generation, and total cost of ownership when compared to single-use packaging commonly deployed for battery shipments.

Drawing on real-world case studies from Americase's reusable lithium-ion battery packaging systems, this paper demonstrates how purpose-built, regulatory-compliant reusables not only meet stringent safety and dangerous goods requirements, but also deliver measurable environmental and financial benefits across the full packaging lifecycle.

INTRODUCTION

As industries increasingly embrace sustainability goals, the logistics of hazardous materials remain a complex frontier. Balancing strict safety and regulatory requirements with environmental responsibility is no small feat. Particularly when packaging plays such a central role. For hazmat transport, packaging isn't just a container; it's a compliance tool, a protective barrier, and increasingly, a lever for reducing environmental impact.

In this context, sustainable practices in hazardous materials logistics are more important than ever. Regulatory frameworks continue to evolve, customer expectations are rising, and companies face mounting pressure to reduce their carbon footprint across the supply chain. Yet despite the urgency, one persistent challenge remains: how to evaluate and quantify the environmental benefits of reusable hazmat packaging over the long term.

This white paper addresses that challenge through a comprehensive life cycle assessment (LCA) approach. By examining every stage of a reusable system's life (from material sourcing and manufacturing to transportation, cleaning, reuse cycles, and end-of-life) we shed light on the true sustainability profile of these containers.

We also confront a key tension: while safety and compliance are non-negotiable, they don't have to come at the cost of sustainability. In fact, when designed thoughtfully, reusable packaging can enhance environmental outcomes while maintaining (or even improving) regulatory performance and operational efficiency.

Through real-world case studies drawn from Americase's reusable hazmat solutions, this paper illustrates how packaging innovation contributes to a broader sustainability equation—delivering not only reduced waste and emissions, but also tangible financial returns across the product life cycle.


UNDERSTANDING LIFE CYCLE ASSESSMENT (LCA)

What Is LCA?

To meaningfully compare reusable and single-use hazmat packaging systems, we must first understand the analytical framework behind such evaluations. A Life Cycle Assessment (LCA) is a systematic method used to measure the environmental impacts of a product, process, or system across its entire life span. The primary objective of an LCA is to quantify resource use, emissions, waste, and other ecological effects from the point of origin to the end of life—providing a data-driven basis for sustainability decisions.

An LCA examines multiple stages, including:

- Material extraction and sourcing (raw inputs).
- Manufacturing and production.
- Distribution and transport.
- Usage and maintenance.
- End-of-life treatment, including disposal, recycling, or reuse.

4

There are two primary frameworks used in life cycle analysis:

1. Cradle-to-grave: This traditional approach tracks the full journey of a product from raw material extraction (the “cradle”) to final disposal or degradation (the “grave”). It captures the entire footprint of a single-use or limited-life product and is often used when evaluating systems that end in landfills or incineration.

2. Cradle-to-cradle: This model builds on the cradle-to-grave approach but includes material recovery and reuse, emphasizing closed-loop systems. Products assessed under this model are designed for regeneration (either through recycling or remanufacturing) making it ideal for evaluating reusable packaging solutions. It reflects the principles of a circular economy, where waste becomes a resource for the next life cycle.

By applying these LCA models to hazmat packaging, we can better understand how material selection, product longevity, cleaning cycles, and end-of-life options contribute to (or mitigate) environmental impact. This holistic view is essential for organizations seeking not just compliance, but measurable progress toward sustainability.

Methodology for This Paper

To ensure meaningful and comparable results, this life cycle assessment adheres to established LCA standards and clearly defined parameters. The methodology focuses on providing a rigorous, transparent analysis of reusable hazmat packaging systems in contrast to their single-use counterparts.

System boundaries

This LCA adopts a cradle-to-grave boundary for single-use packaging and a cradle-to-cradle approach for reusable systems. For both, the assessment includes:

- Raw material extraction and sourcing.
- Manufacturing and fabrication.
- Transportation and distribution.
- Use-phase handling and maintenance.
- Cleaning, refurbishment (for reusables).
- End-of-life treatment: disposal, recycling, or reuse.

Excluded from the scope are secondary supply chain effects (e.g., downstream transportation of the packaged hazmat materials), focusing strictly on the packaging's own environmental impact.

Functional unit

The functional unit for this assessment is the safe transport of hazardous materials over 100 use cycles, representing a realistic lifespan for well-designed reusable systems. For single-use packaging, this equates to 100 individual units performing the same function. This normalized unit allows for an apples-to-apples comparison across all impact categories.

5

Assumptions

- Reusable containers are maintained and cleaned according to industry standards after each use.
- Both packaging systems meet identical safety and regulatory requirements.
- Transportation distances and environmental conditions are consistent across both systems.
- End-of-life outcomes (e.g., landfill vs. recycling) are modeled using U.S. national averages.

Comparison parameters

The LCA evaluates both packaging systems based on the following impact categories:

- **Material inputs:** Type, quantity, recyclability, and sourcing of materials.
- **Energy use:** Total energy consumed during manufacturing, transport, and maintenance cycles.
- **Emissions:** Greenhouse gas output (measured in CO₂e), as well as other relevant pollutants (e.g., VOCs, particulates).
- **Waste generation:** Volume and type of waste produced, including packaging debris and end-of-life material.
- **Total cost of ownership:** Capital, maintenance, and disposal costs over 100 cycles.

By standardizing these inputs and outputs, this methodology enables a clear comparison of environmental and financial impacts, paving the way for more informed decisions in packaging procurement and policy.

With the methodology established, we can now examine how reusable and single-use hazmat packaging systems compare across real-world performance metrics. By applying the defined system boundaries, functional unit, and impact categories, the following section presents a side-by-side analysis of both models—highlighting differences in material use, emissions, waste output, and total cost over time. This comparison reveals not only the environmental implications of packaging choices, but also their operational and economic trade-offs.

REUSABLE VS. SINGLE-USE HAZMAT PACKAGING

Material Sourcing and Manufacturing

The environmental impact of hazmat packaging begins long before it enters the field. Material selection and manufacturing processes play a critical role in determining a system's overall sustainability footprint. In this section, we examine the types of materials used, their energy intensity, and the resource demands associated with producing both reusable and single-use hazmat containers.

Material types and resource extraction

Single-use hazmat packaging is typically constructed from lightweight plastics, foams, or corrugated fiberboard—materials that are inexpensive to produce but often derived from non-renewable, petroleum-based sources. These materials are rarely recycled at end-of-life due to contamination, mixed-material construction, or regulatory constraints, contributing to landfill volume and, in some cases, microplastic pollution.

In contrast, reusable packaging systems—such as those designed by Americase—are built using durable metals (e.g., aluminum, galvanized steel) and high-performance polymers. While these materials require more energy to extract and fabricate initially, they offer significantly greater structural integrity and longevity, enabling repeated use over dozens or even hundreds of transport cycles. Importantly, these materials retain value at end-of-life and are highly recyclable through established industrial recycling streams, supporting circular material recovery and reducing overall lifecycle waste.

Energy intensity of manufacturing

The manufacturing of durable reusable systems typically involves higher initial energy consumption, especially for metal forming, welding, and surface treatments. However, this energy is amortized over many reuse cycles. Single-use systems, while less energy-intensive to produce per unit, must be manufactured anew for each use—resulting in a cumulative energy demand that can exceed that of a single reusable system over time.

Initial environmental cost: Durable vs. disposable

Reusable packaging systems carry a higher environmental cost upfront, both in terms of material volume and the embodied energy associated with durable materials and fabrication processes. However, because these systems are engineered for long-term use and can be cleaned and reconditioned, their per-use environmental burden declines sharply as they are cycled through multiple uses. Life cycle assessment research on industrial transport packaging, specifically comparing single-use fiber drums with reusable steel drums for dangerous goods transport, shows that even containers requiring energy-intensive materials for their manufacture eventually yield lower environmental impacts over many uses.

Single-use packaging.

Reusable packaging. Example shown is Americase's Battery Super Box.

In contrast, disposable packaging systems exhibit a lower initial impact per unit, but that impact is repeated with every shipment. Comparative LCA work on steel drum reuse indicates that, for reusable drums, impacts from manufacturing dominate early life stages, whereas reconditioning contributes a much smaller proportion and the cumulative impact falls relative to single-use systems as reuse increases. For example, a study of steel drum reuse found that with only two rotations the reuse scenario had roughly 74% of the environmental impact of a single-use system, dropping to about 53% after ten uses.

This dynamic creates a clear break-even point beyond which the reusable system becomes the more sustainable option as the number of use cycles increases, illustrating the material and manufacturing trade-offs that operators must weigh when balancing immediate costs against long-term environmental and operational gains.

Transportation and Deployment

Beyond material and manufacturing considerations, the design of hazmat packaging directly influences transportation efficiency, and by extension, its environmental footprint. Weight, volume, and structural form factors all play critical roles in determining fuel consumption, shipping emissions, and logistical costs.

Weight and volume implications on emissions

Single-use packaging is often favored for its lightweight construction, which can reduce shipping weight on a per-unit basis. However, this benefit is often offset by bulkier dimensions, inefficient stacking, and the need for additional protective padding. As a result, these units can occupy more volume per shipment, limiting how much product can be transported per load and increasing the number of required trips.

Reusable systems, while typically heavier due to metal construction and structural reinforcements, are often engineered for compactness and stackability. Many incorporate design elements that reduce wasted space and allow for denser palletization or more efficient use of cargo holds. Over multiple shipments, this translates into fewer trips and more consistent transport loads, reducing the per-use fuel and emissions impact.

Design efficiencies and return logistics

A key factor in the viability of reusable systems is the efficiency of return logistics. Americase and other innovators address this through collapsible, modular, or stackable designs that minimize the space required to transport empty containers back to the origin for cleaning, inspection, and reuse. Many reusable hazmat systems are engineered around standardized form factors common to regulated materials—such as cylinders, canisters, battery modules, or pressure vessels—allowing containers to conform to predictable dimensions and handling requirements across the supply chain.

Some systems also integrate with automated material handling equipment or align with industry-standard footprints, further optimizing vehicle loading, storage density, and warehouse throughput. By reducing the volume, variability, and handling complexity of reverse logistics, these design efficiencies help overcome one of the primary challenges associated with reusable packaging—ensuring that its environmental benefits are not offset by inefficient returns.

Single-use packaging.

Reusable packaging. Example shown is Americase's Battery Backup Unit Cases.

Overall, while reusable systems may incur a slightly higher transport burden upfront due to their robust construction, optimized loading geometry, durability, and efficient return logistics yield a lower cumulative emissions profile over time, particularly in high-cycle hazardous materials logistics environments.

Usage Cycles and Durability

The true environmental and financial return on reusable hazmat packaging is realized during the use phase, where long service life and consistent performance drive down per-use impact. Durability is not just a design goal, it's the foundation of lifecycle value.

Typical lifespan of reusable containers

Well-engineered reusable packaging systems for lithium-ion batteries are designed to withstand dozens to hundreds of transport cycles under stringent regulatory and safety requirements. Unlike general-purpose packaging, lithium-ion battery containers must manage high mass, high energy density, and the risk of thermal events, which drives the use of robust materials such as aluminum, steel, and engineered fire-resistant components. In regulated dangerous goods logistics, reusable metal containers for batteries are subject to routine inspection, cleaning, and requalification, enabling them to remain in service for extended lifespans while maintaining structural integrity and containment performance.

This durability allows a single reusable lithium-ion battery container to replace many single-use packages that are frequently discarded after one shipment due to contamination, deformation, or compliance constraints. As a result, the environmental impacts associated with material extraction, manufacturing energy, and emissions are distributed across a much longer functional life. Industrial life-cycle studies of reusable hazardous materials packaging consistently show that once a container is reused across sufficient cycles, its per-use environmental footprint drops well below that of disposable alternatives, often well before the end of its engineered service life.

Maintenance schedules and performance tracking

Durability alone isn't enough, systematic maintenance and inspection routines are essential to preserve safety and regulatory compliance across the lifecycle. Reusable packaging systems typically follow defined service schedules that include:

- Visual inspections after each use for dents, corrosion, or compromised seals.
- Periodic testing of closures, gaskets, and liners to ensure containment integrity.
- Cleaning and sanitization protocols to meet hazmat and environmental standards.

Advanced systems often integrate RFID tagging or QR-based tracking to log usage history, maintenance events, and inspection outcomes. This data helps operators monitor performance, predict service intervals, and document compliance—while also identifying containers nearing end-of-life for responsible refurbishment or recycling.

By pairing rugged design with proactive lifecycle management, reusable hazmat packaging systems deliver consistent, repeatable performance across many cycles, supporting both safety objectives and sustainability goals.

Cleaning and Refurbishment

While reusable hazmat containers offer significant long-term environmental benefits, they also require ongoing upkeep, primarily in the form of cleaning and periodic refurbishment. These maintenance activities introduce resource demands of their own, which must be factored into the overall life cycle assessment to provide a complete picture of sustainability.

Cleaning: Water, energy, and chemical inputs

Cleaning reusable hazmat packaging must meet rigorous standards to ensure safety, prevent cross-contamination, and comply with regulatory protocols. The typical cleaning process involves:

- Water use for rinsing or high-pressure washing.
- Energy inputs for heating water and powering wash systems.
- Chemical agents for disinfecting or neutralizing hazardous residues.

Though resource-intensive on a per-cleaning basis, these inputs are relatively minor when spread over dozens of use cycles. Many facilities use closed-loop wash systems to recycle water and capture contaminants for safe disposal, further minimizing environmental impact. Additionally, container materials such as aluminum or high-grade polymers are often selected for their ease of cleaning, reducing the volume and concentration of chemicals required.

Refurbishment: Frequency and impact

Over time, even the most robust reusable systems may require repairs or component replacements to maintain structural integrity and regulatory compliance. Common refurbishment tasks include:

- Replacing gaskets, seals, or fasteners.
- Recoating or repainting metal surfaces to prevent corrosion.
- Straightening or reinforcing dented frames or panels.

The frequency of refurbishment varies depending on use intensity, handling conditions, and material quality, but is generally low—often occurring only after dozens of cycles or years of service. Importantly, many reusable hazmat packaging systems are engineered for field repairability. Modular components, standardized fasteners, and replaceable wear parts allow maintenance and minor repairs to be performed at or near the point of use, without removing the container from service for extended periods.

This field-serviceable design significantly extends usable life, reduces downtime, and avoids the environmental and financial costs associated with premature replacement or full-system returns. By enabling targeted repairs rather than wholesale disposal, refurbishment delays new production and minimizes waste generation across the lifecycle.

When cleaning, refurbishment, and field repairability are managed efficiently, operators can preserve both the structural and regulatory performance of reusable containers while keeping environmental impact and operating costs in check. When designed correctly, these processes are not burdens—they are enablers of long-term sustainability, operational resilience, and lifecycle value.

End-of-Life Scenarios

The environmental performance of a packaging system doesn't end with its last use. How containers are handled at the end of their service life plays a crucial role in determining their true sustainability value. Reusable hazmat packaging systems offer distinct advantages over single-use alternatives in this final phase; particularly in terms of recyclability, landfill avoidance, and alignment with circular economy principles.

Recycling potential and landfill avoidance

Unlike single-use packaging (much of which ends up in landfills due to mixed materials or contamination) reusable systems are typically constructed from homogeneous, high-quality materials such as aluminum, stainless steel, and engineered polymers. These materials retain value at end-of-life and are highly recyclable through standard industrial processes.

For example, aluminum components can be melted down and reformed with minimal energy input, offering a near-closed-loop recycling potential. This contrasts sharply with the fate of fiberboard or expanded foam packaging, which is often contaminated and non-recyclable, leading to significant landfill contributions over time.

Extended producer responsibility and circular design

Manufacturers are increasingly moving toward extended producer responsibility (EPR) models, in which accountability for a product extends beyond the point of sale and into its full lifecycle. This shift reflects a broader industry effort to reduce waste, improve material efficiency, and respond to emerging regulatory and customer expectations. Common approaches gaining traction across the market include:

- Refurbishment pathways that return aging packaging systems to service rather than discarding them.
- Take-back or return mechanisms for damaged or end-of-life containers.
- Material recovery and recycling programs designed to reintroduce raw materials into the production stream.

These programs are supported by circular design principles, in which products are engineered from the outset for disassembly, repairability, and recyclability. Fasteners, hinges, liners, and seals are modular and replaceable, ensuring that the majority of the system remains in use or reenters production even when select components reach end-of-life.

By integrating sustainability into the final stage of the product lifecycle, reusable hazmat packaging solutions demonstrate not just regulatory compliance, but a commitment to long-term environmental stewardship.

With the full lifecycle of reusable and single-use hazmat packaging systems now examined (from material sourcing to end-of-life) it's possible to assess their true performance. The next section consolidates these findings to evaluate the environmental and economic impact of each model. By comparing emissions, waste output, and total cost of ownership across standardized use cycles, we reveal the tangible benefits and trade-offs associated with reusable packaging in real-world applications.

ENVIRONMENTAL AND ECONOMIC IMPACT

Carbon Footprint and Emissions

A key indicator of environmental performance is the total carbon footprint associated with a packaging system across its lifecycle. For hazmat containers, this includes emissions generated from raw material extraction, manufacturing, transportation, cleaning, maintenance, and end-of-life processing. While reusable systems typically carry a higher initial carbon load, their ability to amortize that impact over many use cycles leads to substantial long-term emission savings.

Emission savings over reuse cycles

Each reuse of a high-quality container replaces the need for a new single-use equivalent, avoiding the emissions associated with that container's manufacture, transport, and disposal. In one comparative LCA, even with only two reuse cycles, the reusable system's environmental impacts averaged about 74 % of those for a single-use system, and dropped to roughly 53 % after ten uses, with the advantage increasing as use cycles rose.

This reflects a broader trend in industrial remanufacturing and reuse: durable containers require more embodied energy up front, but distributing that embodied energy over many uses significantly reduces the per-use carbon footprint, especially relative to repeatedly producing single-use packaging. Studies of drum reconditioning and reuse show that the manufacturing phase tends to dominate life cycle impacts, while reconditioning and cleaning contribute a much smaller share of total emissions, meaning that the benefits of reuse accrue quickly as cycle counts increase.

11

Ongoing emissions associated with cleaning, inspection, refurbishment, and return logistics remain relatively stable per cycle, and in many reuse systems are much lower than the emissions saved by displacing new production. As a result, the effective carbon intensity per use continues to decline with each additional cycle through optimized reuse logistics and reduced reliance on virgin materials.

Break-even points compared to single-use

The point at which the cumulative environmental impacts of a reusable packaging system fall below those of repeatedly using single-use containers depends on design, transport distances, and how many times a container is cycled through reuse. Life cycle assessment practitioners identify this as the break-even point—the minimum number of uses a reusable system must see before it becomes environmentally advantageous relative to single-use alternatives. Methodological reviews of LCA studies show that sensitivity and scenario analyses are essential for determining such break-even points, which vary by application and logistics context.

While exact numbers differ by industry and system boundaries, many LCA comparisons find that reusable systems generally outperform single-use configurations after multiple rotations, typically in the low double-digit range of cycles depending on material choice, system design, and operational parameters.

This shift underscores the importance of both durable engineering and reuse compliance: to realize meaningful carbon benefits, organizations must not only invest in rugged, returnable packaging but also maintain the operational processes—including reverse logistics and inspection protocols—that keep units in rotation as long as technically feasible.

Waste Generation and Resource Use

Beyond emissions, one of the most visible and immediate environmental advantages of reusable hazmat packaging is its ability to significantly reduce solid waste output and the continuous consumption of virgin materials. These impacts are especially pronounced in industries with high shipment volumes, where single-use packaging can generate substantial waste streams and strain local disposal infrastructure.

Reduction in solid waste volume

Single-use hazmat containers, especially those constructed from layered materials, foams, and chemically treated composites, are frequently non-recyclable and are discarded after a single use, contributing to landfill-bound waste and higher lifecycle environmental burdens. Comparative life cycle assessments of industrial transport packaging show that the reusable scenario consistently yields lower environmental impact indicators, including solid waste generation and resource depletion, by keeping durable containers in service rather than sending them to disposal after one shipment.

In contrast, reusable hazmat systems remain in service for dozens or even hundreds of cycles, dramatically reducing the cumulative volume of waste generated over time. Meta-analyses of LCA results indicate that reuse systems significantly curb packaging waste; closed-loop and reusable approaches have been shown in broader transport packaging assessments to reduce total waste volumes by substantial percentages when compared to single-use systems because one reusable container effectively displaces many disposable units.

Field data from industrial packaging life cycle studies support the magnitude of this effect: replacing 100 single-use containers with one reusable unit can prevent hundreds of pounds of packaging waste, including plastics, foams, adhesives, and liners that are often contaminated and unsuitable for recycling, from entering waste streams. Over the full service life of a well-engineered reusable system, this translates into a waste reduction well in excess of 90 % relative to the equivalent number of disposable packagings, depending on application and maintenance schedule.

Conservation of raw materials over time

The raw material demand for single-use systems scales directly with shipment volume. More use means more extraction, processing, and waste. Reusable containers, by contrast, front-load this material requirement into a single, durable build. When properly maintained, these systems conserve raw materials by extending the functional life of each unit far beyond that of disposable options.

For example, aluminum used in Americase's reusable containers may require more energy and material to fabricate initially, but once in service, it displaces hundreds of pounds of plastics, wood, or composite materials over time. Moreover, aluminum is particularly well suited to circular use: recycled aluminum requires significantly less energy to produce than primary (virgin) aluminum, enabling substantial energy savings when containers are refurbished or materials are recovered at end-of-life. Because these metals are highly recyclable, they can often be reclaimed and reintegrated into new systems, supporting a near-closed-loop material cycle.

By reducing both waste volume and the need for repeated raw material extraction—while enabling lower-energy material recovery—reusable hazmat packaging delivers clear, long-term environmental benefits that align with global sustainability goals and corporate ESG commitments.

Total Cost of Ownership (TCO)

While environmental benefits often take center stage in sustainability discussions, cost efficiency remains a decisive factor for organizations managing hazardous materials logistics. A comprehensive Total Cost of Ownership (TCO) analysis—which accounts for upfront acquisition costs, handling and maintenance, reverse logistics, damage rates, and disposal fees—shows that reusable hazmat packaging systems frequently outperform single-use alternatives economically over time. Industry analyses of returnable industrial packaging demonstrate that although reusable systems require higher initial investment, their costs are amortized across multiple use cycles, often resulting in lower cumulative spend compared to repeatedly purchasing and disposing of one-time packaging.

This cost advantage is particularly pronounced in regulated or closed-loop logistics environments common to hazardous materials transport, where recovery rates are high and disposal, compliance, and damage-related costs associated with single-use packaging are significant.

Upfront vs. lifetime cost comparisons

Reusable containers generally involve a higher upfront investment due to their durable materials, engineered features, and regulatory-grade construction. However, lifecycle cost analyses used in regulated and industrial logistics consistently show that this initial investment is distributed across many reuse cycles, dramatically lowering the effective cost per shipment over time. In contrast, single-use packaging may appear more affordable on a per-unit basis, but its cost accumulates with each shipment through repeated purchasing and disposal, often surpassing the lifetime expense of a reusable system once moderate reuse thresholds are reached, depending on recovery rates and operational conditions.

13

Illustrative cost-comparison models commonly used in industrial transport packaging economics show that when a reusable container costs several times more than a disposable alternative, break-even can still occur in relatively few reuse cycles. For example, in a scenario where a single-use container costs \$100 and a reusable container costs \$800, break-even is achieved by the eighth use, after which each additional reuse delivers cumulative savings—especially when deployed in closed-loop or well-managed reuse systems such as regulated hazardous materials logistics. These models help businesses identify and compare one-time costs against lifetime per-use costs, enabling decision-makers to justify reusable investment based on total cost over expected use cycles.

Maintenance, compliance, and risk mitigation factors

Reusable systems also offer long-term cost stability in areas often overlooked in procurement: maintenance, regulatory compliance, and risk management.

- Maintenance costs (such as cleaning, inspection, and occasional refurbishments) are typically predictable and can be budgeted over the life of the container.
- Compliance assurance is built into the design of reusable systems, many of which include standardized closures, labeling zones, and documentation support to streamline audits and inspections.
- Risk mitigation is a major financial factor. Durable containers reduce the likelihood of leaks, contamination, or transport damage, helping organizations avoid costly fines, remediation efforts, and liability claims.

When viewed through a full-lifecycle lens, reusable hazmat packaging systems deliver a lower TCO and more predictable operational spending, all while aligning with safety, sustainability and compliance objectives.

The environmental and economic advantages of reusable hazmat packaging are compelling in theory, but their true impact is best understood through real-world application. In the following case studies, we examine how Americase's engineered reusable systems perform across multiple metrics in active deployment. From reduced emissions and waste to cost savings and improved safety and compliance, these examples illustrate the tangible value of investing in durable, well-managed reusable packaging solutions.

ENVIRONMENTAL AND ECONOMIC IMPACT OF REUSABLE PACKAGING

Carbon footprint and emissions

- Emission savings over reuse cycles

Waste generation and resource use

- Reduction in solid waste volume
- Conservation of raw materials over time

Total cost of ownership (TCO)

- Upfront vs. lifetime cost
- Maintenance, compliance, and risk mitigation factors

14

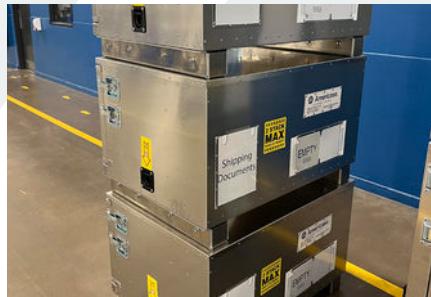
AMERICASE CASE STUDIES

The theoretical benefits of reusable hazmat containers (reduced emissions, lower waste, and long-term cost savings) are substantiated by real-world deployments. Two standout examples from Americase illustrate how these systems deliver measurable environmental and operational gains across critical industries.

Case study 1: EV battery transport & storage

Americase developed a reusable, regulatory-compliant packaging system for electric vehicle (EV) lithium-ion batteries, a high-risk hazmat category prone to thermal runaway events. These custom-engineered containers:

- Feature full thermal containment, fire-resistant materials, and reusability across numerous shipping cycles.
- Are designed for field handling, cleaning, and regulatory inspections, allowing repeated safe use without degradation of containment performance.
- Replace single-use fiberboard or steel drum systems that are typically landfilled after one shipment due to contamination or structural compromise.



Impact: This packaging solution helps EV manufacturers and battery recyclers significantly reduce landfill waste, improve compliance, and lower per-shipment costs while supporting a circular model for high-risk materials.

Case study 2: Battery backup unit (BBU) cases for data centers

For data centers, Americase created a multi-use packaging system for transporting lithium-ion Battery Backup Units (BBUs), equipment classified under hazardous goods transport regulations. These cases are:

- Constructed from recyclable aluminum and designed for a 10+ year field life.
- Engineered with shock absorption, stackable transport configurations, and field-repairable components.
- Fully compliant with UN/DOT hazmat regulations and optimized for reverse logistics, enabling efficient returns and redeployments.

15

Impact: In high-volume data center deployments, these reusable cases have demonstrated a significant reduction in waste output, improved handling efficiency, and cost savings over single-use packaging, with the total cost of ownership declining with each reuse cycle.

While the advantages of reusable hazmat packaging are clear, realizing their full value requires thoughtful execution. Successful adoption depends not just on container design, but on how organizations integrate these systems into daily operations. The next section outlines best practices for implementing reusable packaging solutions, covering procurement strategies, operational planning, and maintenance protocols to ensure both environmental and economic goals are met.

BEST PRACTICES FOR IMPLEMENTATION

Transitioning from single-use to reusable hazmat packaging requires more than a product swap; it calls for an integrated strategy that aligns with operational workflows, safety standards, and long-term sustainability goals. The following best practices help ensure that organizations realize the full benefits of reusable systems while maintaining safety, regulatory compliance and logistical efficiency.

1. Choose the right reusable system for your supply chain

Reusable packaging is not one-size-fits-all. Organizations must evaluate their specific transport conditions, material handling processes, and risk profile to select the most appropriate solution. Key factors to consider include:

- Hazard classification of the materials being transported.
- Weight, size, and fragility of the payload.
- Frequency and distance of shipments.
- Storage and stacking capabilities.
- Field-serviceability for repairs and refurbishment.

Partnering with experienced suppliers, like Americase, who can provide custom-engineered solutions tailored to these variables is essential for maximizing reuse cycles and ROI.

16

BEST PRACTICES FOR IMPLEMENTATION

1. Choose the right reusable system for your supply chain

2. Integrate tracking, cleaning, and reverse logistics

3. Maintain compliance with DOT, IATA, and other regulations

2. Integrate tracking, cleaning, and reverse logistics

To support long-term use, organizations must develop clear processes for tracking, cleaning, and retrieving containers after each use:

- Implement digital tracking systems (e.g., RFID or barcode scanning) to monitor container usage, location, maintenance history, and compliance status.
- Establish standardized cleaning protocols that ensure safety without excessive water or chemical use.
- Design a reverse logistics workflow that enables efficient return and reintegration of containers into the shipping cycle. Ideally through stackable or collapsible configurations to minimize return costs.

A well-managed system reduces losses, extends container life, and preserves regulatory integrity.

3. Maintain compliance with DOT, IATA, and other regulations

Reusable hazmat packaging must meet the same strict safety and labeling requirements as their disposable counterparts. Depending on the mode of transport, this may include:

- DOT 49 CFR regulations for Dangerous Goods transport in the United States.
- IATA Dangerous Goods Regulations (DGR) for air transport.
- IMDG Code for maritime shipping.
- Regular inspection and requalification requirements for containers under certain hazmat classifications.

Reusable systems should be designed and tested to meet or exceed these regulatory thresholds, and operators must establish training and documentation practices to demonstrate compliance throughout the container's lifecycle.

CONCLUSION: RETHINKING HAZMAT PACKAGING THROUGH LIFECYCLE INTELLIGENCE

The shift toward sustainability in hazardous materials logistics is an operational and reputational imperative. As this white paper has shown, reusable hazmat packaging systems offer compelling advantages from a life cycle perspective, including:

- Significant reductions in carbon emissions after just a modest number of reuse cycles.
- Dramatic waste avoidance and conservation of raw materials.
- Lower total cost of ownership over time, driven by durability and efficient logistics.
- Improved safety, compliance, and reliability through engineered, regulatory-aligned design.

17

These benefits extend far beyond environmental gains. They align directly with financial efficiency, risk mitigation, and corporate responsibility objectives, which makes reusable packaging a strategic asset in modern supply chains.

At the same time, Life Cycle Assessment (LCA) is becoming an essential tool in procurement and ESG reporting. Organizations are under increasing pressure to document and justify their environmental impact across every stage of product and materials handling. By adopting a lifecycle approach to hazmat packaging, companies can make data-informed decisions that advance both compliance and sustainability mandates.

Now is the time for action. We encourage safety experts, procurement leaders, operations managers, and sustainability teams to evaluate their current packaging strategies and explore investments in reusable, lifecycle-optimized solutions. The tools, the technology, and the data are already here, as demonstrated by Americase's real-world systems and case studies. The next step is commitment.

Rethink the container. Rethink the cycle. The path to safer, smarter, and more sustainable hazmat logistics starts here.

About Americase

Americase is a leading provider of custom-engineered protective packaging solutions for hazmat and high-value goods. With a focus on safety, compliance, and sustainability, Americase helps organizations protect their most valuable assets throughout the supply chain lifecycle.

For inquiries about custom packaging solutions or to learn more about our capabilities, contact us at www.americase.com.

This white paper is published by Americase and is intended for informational purposes. While every effort has been made to ensure accuracy, readers should consult with qualified professionals for specific compliance and security requirements.

Publication Date: February 2026
© 2026 Americase. All rights reserved.

Visit americase.com to learn more about us,
or scan the QR code below:

